Root-derived cytokinins as long-distance signals for NO3--induced stimulation of leaf growth.
نویسندگان
چکیده
Leaf growth of many plant species shows rapid changes in response to alterations of the form and the level of N supply. In hydroponically-grown tomato (Lycopersicon esculentum L.), leaf growth was rapidly stimulated by NO(3)(-) application to NH(4)(+) precultured plants, while NH(4)(+) supply or complete N deprivation to NO(3)(-) precultured plants resulted in a rapid inhibition of leaf growth. Just 10 microM NO(3)(-) supply was sufficient to stimulate leaf growth to the same extent as 2 mM. Furthermore, continuous NO(3)(-) supply induced an oscillation of leaf growth rate with a 48 h interval. Since changes in NO(3)(-) levels in the xylem exudate and leaves did not correlate with NO(3)(-)-induced alterations of leaf growth rate, additional signals such as phytohormones may be involved. Levels of a known inhibitor of leaf growth, abscisic acid (ABA), did not consistently correspond to leaf growth rates in wild-type plants. Moreover, leaf growth of the ABA-deficient tomato mutant flacca was inhibited by NH(4)(+) without an increase in ABA concentration and was stimulated by NO(3)(-) despite its excessive ethylene production. These findings suggest that neither ABA nor ethylene are directly involved in the effects of N form on leaf growth. However, under all experimental conditions, stimulation of leaf growth by NO(3)(-) was consistently associated with increased concentration of the physiologically active forms of cytokinins, zeatin and zeatin riboside, in the xylem exudate. This indicates a major role for cytokinins as long-distance signals mediating the shoot response to NO(3)(-) perception in roots.
منابع مشابه
BYPASS1 Negatively Regulates a Root-Derived Signal that Controls Plant Architecture
Plant architecture is regulated by endogenous developmental programs, but it can also be strongly influenced by cues derived from the environment. For example, rhizosphere conditions such as water and nutrient availability affect shoot and root architecture; this implicates the root as a source of signals that can override endogenous developmental programs. Cytokinin, abscisic acid, and caroten...
متن کاملRoot System Regulation of Whole Plant Growth1
New evidence confirms earlier postulates that root signals to shoots, including abscisic acid, nitrate flux, and cytokinins, modify whole plant growth processes including leaf expansion, stomatal behavior, and biosynthesis of photosynthetic enzymes. Root signals are thought to reflect soil water, nutrient, and mechanical attributes, as sensed by roots. Meristematic activities in root tips initi...
متن کاملPossible Roles of Strigolactones during Leaf Senescence
Leaf senescence is a complicated developmental process that involves degenerative changes and nutrient recycling. The progress of leaf senescence is controlled by various environmental cues and plant hormones, including ethylene, jasmonic acid, salicylic acid, abscisic acid, cytokinins, and strigolactones. The production of strigolactones is induced in response to nitrogen and phosphorous defic...
متن کاملInfluence of root-bed size on the response of tobacco to elevated CO2 as mediated by cytokinins
The extent of growth stimulation of C3 plants by elevated CO2 is modulated by environmental factors. Under optimized environmental conditions (high light, continuous water and nutrient supply, and others), we analysed the effect of an elevated CO2 atmosphere (700 ppm, EC) and the importance of root-bed size on the growth of tobacco. Biomass production was consistently higher under EC. However, ...
متن کاملChemical root to shoot signaling under drought.
Chemical signals are important for plant adaptation to water stress. As soils become dry, root-sourced signals are transported via the xylem to leaves and result in reduced water loss and decreased leaf growth. The presence of chemical signals in xylem sap is accepted, but the identity of these signals is controversial. Abscisic acid (ABA), pH, cytokinins, a precursor of ethylene, malate and ot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 56 414 شماره
صفحات -
تاریخ انتشار 2005